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Abstract. Computational studies about the properties of the receptive
fields of neurons in the cortical visual pathway of mammals are abundant
in the literature but most addressed neurons in the primary visual area
(V1). Recently, the sparse deep belief network (DBN) was proposed to
model the response properties of neurons in the V2 area. By investigating
the factors that contribute to the success of the model, we find that a
simple algorithm for data clustering, K-means algorithm can be stacked
into a hierarchy to reproduce these properties of V2 neurons, too. In
addition, it is computationally much more efficient than the sparse DBN.
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1 Introduction

Since Hubel and Wiesel [1] found that the receptive fields of many neurons in
the primary visual cortex (V1) are edge detectors, a wealth of researches have
attempted to interpret this ground breaking discovery. Two well-known propos-
als refer to sparse coding [2, 3] and independent component analysis (ICA) [4].
Both approaches can be understood as a single layer network where the inputs
are image pixels and the outputs correspond to the responses of V1 simple cells,
which are assumed to be sparse, i.e., the output units should keep silence or near
silence most of the time and fire only occasionally. Sparsity is closely related to
high-order statistics of natural images, which plays a significant role in repro-
ducing the edge-like structure of the receptive fields of V1 simple cells. In fact,
with sparsity constraint many other models such as the restricted Boltzmann
machine (RBM) [5], auto-encoder [6] and K-means algorithm [7, 8] have been
found to be able to learn the edge-like structure of the receptive fields of V1
neurons on natural images.

Hierarchical models [9,10] have been proposed for modeling the response prop-
erties of V1 complex cells, another important type of neurons in V1 area. How-
ever, there have been few attempts to quantitatively model the properties of
neurons beyond V1 along the cortical visual pathway such as V2 or V4. The fa-
mous hierarchical model HMAX [11] was tested against V4 neurons and achieved
remarkable results [12]. But the properties of its low level units are handcrafted
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and what is more interesting to the computational neuroscience community is
learning each layer in a similar way. The deep belief network [13] is such a model.
It consists of multiple layers of RBMs, and learning starts from the bottom layer
to the top layer in the sequel. It was found that a two-layer DBN is able to
replicate some properties of the receptive fields of both V1 and V2 neurons by
imposing a sparse firing constraint on each layer [5]. This model owes its success
largely to its nonlinearity on the the first layer output. In the present paper, we
will show that the difference between the sparsity degrees on the two layers are
also critical for producing these results. To be more specifically, the second layer
firing should not be as sparse as the first layer. If one seeks alternative models
for doing similar task, neither of the two factors should be ignored.

In the paper, we will show that the K-means algorithm, a simple data cluster-
ing algorithm, can be stacked into a hierarchy to model V2 neurons. However,
as the standard K-means algorithm is an extremely sparse model (for each input
data only one hidden unit fires), to control its sparsity degree, some modifications
are needed.

2 Sparse Deep Belief Network

A restricted Boltzmann machine (RBM) consists of a layer of visible units v, a
layer of hidden units h and a symmetric connections weights between the two
layers represented by a matrixW . The visible units and hidden units have biases,
denoted by ci and bj, respectively [14]. The sparse RBM imposes a sparse firing
constraint on the hidden units [5]. With a set of training data v1, . . . ,vN where
vn ∈ RD, the sparse RBM minimizes the following function
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and λ, σ > 0. In above equations, 〈·〉 denotes average over samples and E(·) de-
notes the conditional expectation given the data. The parameter p is the desired
firing probability of the hidden units, which controls the sparsity degree of firing.

With a modified contrastive divergence learning rule [5], the sparse RBM can
learn the gabor-like receptive fields of V1 simple cells on natural images. Fig. 1
visualizes 200 weights associated with the hidden units. They were learned on
a large set of randomly selected 14-by-14 patches from ten 512-by-512 natural
images [2], which were preprocessed by 1/f whitening and low pass filtering in
the frequency domain. The sparsity parameter is set as p = 0.02.

We stacked another sparse RBM with 200 hidden units on top of the first
layer, and trained the second layer weights and biases by freezing the first layer
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Fig. 1. Visualization of 200 first layer weight vectors of the sparse DBN. Each 14× 14
patch corresponds to a weight vector.

(a)

(b)

Fig. 2. Visualization of 200 second layer weight vectors of the sparse DBN. (a) p = 0.02,
(b) p = 0.04.
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weights and biases. The resulting model is called sparse deep belief network or
sparse DBN [5]. The receptive fields of the second layer units are visualized
in Fig. 2 as weighted sum of the receptive fields of first layer units. It is seen
that with p = 0.02 the receptive fields are visually similar to the receptive
fields of the first layer; while with p = 0.04 the receptive fields are like edge
conjunctions or corners, in agreement with the V2 neuron properties. In fact,
with increasing p (greater than 0.02), our experiments showed that the structure
of the receptive fields became more and more complex (data not shown). This
observation suggests that the nonlinearity of the sparse RBM is not the only
factor that contributes to the emergence of V2 neuron receptive fields, and the
higher firing rate on the second layer than on the first layer is another critical
factor. If one seeks alternative models for reproducing the V2 neuron properties,
both factors should be considered.

3 Hierarchical K-Means Algorithms

3.1 K-Means Algorithms

The goal of K-means algorithm is to partition the data set v1, . . . ,vN into K
clusters. If we introduce a latent variable wj , the mean or centroid of cluster j,
where j = 1, . . . ,K, then the goal is to identify wj. The algorithm consists of
two iterative steps:

– For each input vn determine which cluster it belongs to. Mathematically,
this amounts to determine j∗ = argminj ‖vn −wj‖.

– Update wj for j = 1, . . . ,K by taking the mean (centroid) of data assigned
to cluster j.

Each data point vn is assigned a binary indicator vector h where hj = 1 if
this point belongs to cluster j and hj = 0 otherwise. If the latent variables hj

are viewed as “neurons”, then the firing pattern of these neurons is extremely
sparse—for each input only one neuron fires.

3.2 Multiple Firing K-Means Algorithms

Now we relax the algorithm by allowing multiple hidden units fire together for an
input in the first step. Specifically, for each input vn we determine L clusters it
belongs to. Mathematically, this amounts to determine a setΩ ⊂ V = {1, . . . ,K}
such that |Ω| = L and ‖vn −ws‖ ≤ ‖vn −wj‖ for s ∈ Ω and j ∈ V \Ω.

For each input vn set

hj(vn) =

{
1, if vn belongs to cluster j;
0, otherwise.

(1)

Then there are always L hidden units firing. For this reason this algorithm is
called multiple firing K-means algorithm. Its convergence results are stated in
the following theorem.
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Theorem 1. Each step of the multiple firing K-means algorithm lowers the
value of the function

J = 〈
K∑

j=1

hj‖v−wj‖2〉 (2)

until convergence.

Proof. In step 1, wj is fixed. It is easy to see that setting hj = 1 for j ∈ Ω and
hj = 0 for j ∈ V \Ω corresponds to the minimum of J over the binary vector h
subject to the constraint that for each input there are always L elements equal
to 1. In step 2, h is fixed. Notice that ∂J

∂wj
= −2〈hj(v − wj)〉. Then step 2 is

equivalent to taking ∂J
∂wj

= 0, which corresponds to minimization of J over wj .

Therefore, each step results in a decrease of J until convergence.

3.3 Hierarchical Model

Similar to the sparse DBN, we can stack another multiple firing K-means algo-
rithm on top of the first layer. It takes the output of the first layer as input and
learns the centroids of the inputs by freezing the first layer centroids.

4 Experiments

It has been shown that the standard K-means algorithm can reproduce the
gabor-like receptive fields of V1 cells [7,8]. Here we show that the multiple firing
K-means algorithm has the same capability. A large number of 14-by-14 patches
were randomly extracted from ten natural images, which were preprocessed in
the same way as in Section 2. At every iteration 50,000 patches were input to
the network and the centroids got updated once. After about 100 iterations the
algorithm converged. The 200 centroids are plotted in Fig. 3 with L = 3. For
other small values of L the results were visually similar to this figure (we tested
L = 5, 7, 10).

We stacked a second layer multiple firing K-means algorithm to the output
of the first layer. The second layer had 200 units and L was set to 10. After 100
iterations, the algorithm converged. It was found that only a few elements in
the learned second layer centroids were significantly larger than zero (data not
shown). The second layer centroids are visualized in Fig. 4 in the same manner
as Fig. 2. It is seen that the shape of many second layer centroids are like corners
or conjunctions of edges, in agreement with some V2 neurons properties [5].

To test the properties of the second layer units, we generated a set of an-
gle stimuli as shown in Fig. 5 [15]. Each stimulus was a 14-by-14 image patch

representing an angle in { 2π
M , 4π

M , . . . , 2(M−1)π
M } in different orientations, which

resulted in M(M − 1) different stimuli. See [15] for details. In addition, each
stimulus was normalized to zero mean and unit variance. To identify the “cen-
ter” of each second layer unit’s receptive field, we translated all stimuli densely
over the 14 × 14 input image patch, and identified the position at which the
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Fig. 3. Visualization of 200 first layer centroids of the hierarchical K-means

Fig. 4. Visualization of 200 second layer centroids of the hierarchical K-means.

maximum response was elicited. All measures were then taken with all angle
stimuli centered at this position.

For each angle stimulus, we calculated the responses of the first layer units and
second layer units sequentially. Fig. 5 shows the stimuli set withM = 24 together
with responses of three representative second layer units. Note the similarity to
Fig. 5 in [5]. And we emphasize that these units are typical in our model.

To make quantitative comparison between the simulation results and phys-
iological results in [15], we then generated a stimuli set with M = 12. Five
quantities about the statistics of the response profiles of the model neurons on
the stimuli set were calculated and presented in Fig. 6. The physiological results
and the model neurons by the sparse DBN are also presented in the figure. It is
seen that the hierarchical K-means algorithm has produced similar results.

As the hierarchical K-means algorithm and the sparse DBN can produce simi-
lar results, then how about their computational efficiency? This is not a question
in the computational neuroscience community but is important in engineering
applications. One difficulty for such a comparison is that a common termination
condition is lacked for the algorithms (notice that their final results are not the
same, though qualitatively similar). Fortunately, our experiments showed that
the computing time of the two algorithms differed much for producing visually
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Fig. 5. Response profile of three example model V2 neurons on a set of angle stimuli.
Top: the left most patch shows a model V2 neuron by taking the weighted sum of V1
simple cell receptive fields. The next five patches show the receptive fields of the model
V1 simple cells that have strongest connections to this V2 neuron. Bottom: darkened
patches represent stimuli to which the model V2 neuron responded strongly. A small
black square indicates the overall peak response.
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Fig. 6. Distribution of the response statistics over the angle stimuli. The five figures
show respectively the distribution over (i) peak angle response, (ii) tolerance to primary
line component, (iii) tolerance to secondary line component, (iv) tolerance to angle
width, (v) tolerance to angle orientation. See [5,15] for details. Best viewed in color.
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similar results. Table 1 shows the computing time of the two algorithms on a
computer (Intel Core i5-2320 3GHz × 4, RAM 8GB), averaged over 10 trials,
for producing visually similar results to Figs. 1, 2(b), 3 and 4, respectively. For
sparse DBN, p=0.02 in layer 1 and p=0.04 in layer 2. Moreover, in each layer
σ decayed by a factor of 0.99 after every iteration with initial value 0.4, as sug-
gested in [16]. Other parameters were tuned to achieve high efficiency. Learning
terminated after 800 iterations for each layer and in every iteration 100,000
patches were input to the model in batches of 200. For hierarchical K-means,
learning terminated after 100 iterations for each layer and in every iteration
50,000 patches were input to the model together. It is seen that learning in each
layer of the hierarchical K-means algorithm is more than ten times faster than
the sparse DBN.

Table 1. Comparison of the computing time in seconds

V1 V2

sparse DBN 2536.7±21.0 2693.1±37.3

hierarchical K-means 164.3± 4.9 206.3±2.7

5 Conclusions

There are many models capable of reproducing edge-like structure of the recep-
tive fields of V1 neurons, but few have shown to be capable of reproducing edge
conjunction structure of the receptive fields of V2 neurons, except the sparse
DBN. In the paper a hierarchial K-means algorithm is proposed as an alter-
native model for the visual area V2. The simulation results on natural images
qualitatively matched physiological data recorded in monkeys. It was shown to
be much more computationally efficient than the sparse DBN. A promising fu-
ture direction of this research is to extend the hierarchical K-means algorithm to
deep models for learning object parts for computer vision, like the convolutional
DBN [17].
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